Optimized Karatsuba squaring on 8-bit AVR processors

نویسندگان

  • Hwajeong Seo
  • Zhe Liu
  • Jongseok Choi
  • Howon Kim
چکیده

Abstract. Multi-precision squaring is a crucial operation for implementation of Elliptic Curve Cryptography. Particularly, when it comes to embedded processors, the operation should be designed carefully to execute expensive ECC operation on resource constrained devices. In order to bridge the gap between high overheads and limited computation capabilities, we present optimized Karatsuba squaring method for embedded processors. Traditional squaring computation can be divided into two subsquaring and one sub-multiplication parts. Firstly we compute the multiplication part with the fastest Karatsuba multiplication and then remaining two squaring parts are conducted with the fastest sliding block doubling squaring. Proposed method sets the new speed records for multi-precision squaring, improving the execution time by up to 8.49% comparing to the best known works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse Product-Scanning Multiplication and Squaring on 8-Bit AVR Processors

High performance, small code size, and good scalability are important requirements for software implementations of multi-precision arithmetic algorithms to fit resource-limited embedded systems. In this paper, we describe optimization techniques to speed up multi-precision multiplication and squaring on the AVR ATmega series of 8-bit microcontrollers. First, we present a new approach to perform...

متن کامل

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography for Sensor Nodes

In this paper, we present a highly-optimized implementation of standards-compliant Elliptic Curve Cryptography (ECC) for wireless sensor nodes and similar devices featuring an 8-bit AVR processor. The field arithmetic is written in Assembly language and optimized for the 192-bit NIST-specified prime p = 2 − 2 − 1, while the group arithmetic (i.e. point addition and doubling) is programmed in AN...

متن کامل

Low-Weight Primes for Lightweight Elliptic Curve Cryptography on 8-bit AVR Processors

Small 8-bit RISC processors and micro-controllers based on the AVR instruction set architecture are widely used in the embedded domain with applications ranging from smartcards over control systems to wireless sensor nodes. Many of these applications require asymmetric encryption or authentication, which has spurred a body of research into implementation aspects of Elliptic Curve Cryptography (...

متن کامل

Efficient arithmetic on ARM-NEON and its application for high-speed RSA implementation

Advanced modern processors support Single Instruction Multiple Data (SIMD) instructions (e.g. Intel-AVX, ARM-NEON) and a massive body of research on vector-parallel implementations of modular arithmetic, which are crucial components for modern public-key cryptography ranging from RSA, ElGamal, DSA and ECC, have been conducted. In this paper, we introduce a novel Double Operand Scanning (DOS) me...

متن کامل

Efficient Ring-LWE Encryption on 8-Bit AVR Processors

Public-key cryptography based on the “ring-variant” of the Learning with Errors (ring-LWE) problem is both efficient and believed to remain secure in a post-quantum world. In this paper, we introduce a carefully-optimized implementation of a ring-LWE encryption scheme for 8-bit AVR processors like the ATxmega128. Our research contributions include several optimizations for the Number Theoretic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014